A validation of carbon fiber imaging couch top modeling in two radiation therapy treatment planning systems: Philips Pinnacle3 and BrainLAB iPlan RT Dose
نویسندگان
چکیده
BACKGROUND Carbon fiber (CF) is now the material of choice for radiation therapy couch tops. Initial designs included side metal bars for rigidity; however, with the advent of IGRT, involving on board imaging, new thicker CF couch tops without metal bars have been developed. The new design allows for excellent imaging at the expense of potentially unacceptable dose attenuation and perturbation. OBJECTIVES We set out to model the BrainLAB imaging couch top (ICT) in Philips Pinnacle(3) treatment planning system (TPS), to validate the already modeled ICT in BrainLAB iPlan RT Dose treatment planning system and to compute the magnitude of the loss in skin sparing. RESULTS Using CF density of 0.55 g/cm(3) and foam density of 0.03 g/cm(3), we demonstrated an excellent agreement between measured dose and Pinnacle(3) TPS computed dose using 6 MV beam. The agreement was within 1% for all gantry angle measured except for 120°, which was 1.8%. The measured and iPlan RT Dose TPS computed dose agreed to within 1% for all gantry angles and field sizes measured except for 100° where the agreement was 1.4% for 10 cm × 10 cm field size. Predicted attenuation through the couch by iPlan RT Dose TPS (3.4% - 9.5%) and Pinnacle(3) TPS (2% - 6.6%) were within the same magnitude and similar to previously reported in the literature. Pinnacle(3) TPS estimated an 8% to 20% increase in skin dose with increase in field size. With the introduction of the CF couch top, it estimated an increase in skin dose by approximately 46 - 90%. The clinical impact of omitting the couch in treatment planning will be dependent on the beam arrangement, the percentage of the beams intersecting the couch and their angles of incidence. CONCLUSION We have successfully modeled the ICT in Pinnacle(3) TPS and validated the modeled ICT in iPlan RT Dose. It is recommended that the ICT be included in treatment planning for all treatments that involve posteriors beams. There is a significant increase in skin dose that is dependent on the percentage of the beam passing through the couch and the angle of incidence.
منابع مشابه
SU-E-T-549: On Importance of Accurate Treatment Couch Modeling in SmartArc VMAT Plans.
PURPOSE We investigate the impact of a treatment couch and its modeling in a treatment planning system on accurate dose delivery in Volumetric Modulated Arc Therapy (VMAT). METHODS A cone-beam CT of a Varian couch on a Varian Clinac 21EX unit, consisting of a carbon-fiber imaging couch top and supporting rails, was acquired, and a couch model was created in Philips Pinnacle 9.0 TPS based on t...
متن کامل[Dose impact of a carbon fiber couch for stereotactic body radiation therapy of lung tumors].
The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned...
متن کاملQuantification and modelling of the dosimetric impact of the treatment couch in volumetric modulated arc therapy (VMAT)
Background: As the volumetric modulated arc therapy (VMAT) becoming a main role of treatment ways, the effect of couch top becomes more significant. It is imperative to re-evaluate the couches that previously may have been considered of no importance during early treatment techniques. The impact of couch top on radiation delivery was explored and the couch model was tested with the aim of reduc...
متن کاملComparison of dose calculations between pencil-beam and Monte Carlo algorithms of the iPlan RT in arc therapy using a homogenous phantom with 3DVH software
BACKGROUND To create an arc therapy plan, certain current general calculation algorithms such as pencil-beam calculation (PBC) are based on discretizing the continuous arc into multiple fields to simulate an arc. The iPlan RT™ treatment planning system incorporates not only a PBC algorithm, but also a more recent Monte Carlo calculation (MCC) algorithm that does not need beam discretization. Th...
متن کاملInvestigating treatment dose error due to beam attenuation by a carbon fiber tabletop
Carbon fiber is commonly used in radiation therapy for treatment tabletops and various immobilization and support devices, partially because it is generally perceived to be almost radiotransparent to high-energy photons. To avoid exposure to normal tissue during modern radiation therapy, one must deliver the radiation from all gantry angles; hence, beams often transit the couch proximal to the ...
متن کامل